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ABSTRACT 
 

Seasonal Autoregressive Integrated Moving Average (ARIMA) process of (0,1,2) x (0,1,1) x 
6 that best fits a set of crop-wise coconut yield data, in Bandirippuwa, Lunuwila is identified without 
using variance stabilization transformation. In this process the present value of the series may be 
described as a linear function of the past observation of the series and past disturbances. The physical 
factors such as rainfall, temperature, day length etc. are not required for this method, however the past 
crop figures in the estate is needed. While such model is useful for short term forecasting, it also gives 
the upper and lower limits of the forecasts at a given probability. These intervals would provide the 
quantified information on the degree of duration of the forecasts. 
 
INTRODUCTION 
 

Coconut is a perennial crop harvested at bimonthly intervals (six harvests a year) in Sri 
Lanka. The first harvest generally refers to January/February while the sixth harvest is 
November/December. Variation in yields are observed both between harvests within a year as well as 
between years. It is believed that the yield fluctuation of coconut depend on physical parameters like 
rainfall, temperature, humidity and biotic factors like variety, fertility levels and other management 
conditions. However for a given estate it is reasonable to assurne these biotic factors are not randorn 
variables. Further it is known that the annual distribution of these physical parameters is more 
important to the yield than the quantity and rainfall is the most important. But, as the distribution of 
these factors being highly erratic, forecasting yields has become a problem. 
 

Several authors have attempted to develop different mathematical models for forecasting 
annual coconut yields of a given estate. To apply models it is necessary to maintain records of daily 
rainfall of the previous years. Such records are generally not maintained in many estates and therefore 
those models cannot be applied to them. In addition the models suggestions are not applicable to 
predict yield in a given harvest of a year. Therefore it would be more useful to identify a model which 
enables forecasting both harvest-wise and annual yields in an estate in the absence of any physical 
parameters. 
 

In this paper a seasonal ARIMA model is identified to forecast the yield in the particular estate 
using Box Jenkins Methodology of time series analysis. The stationary of the series is achieved using 
one degree each from nonseasonal difference and seasonal difference with the length of seasonality as 
six. The autocorrelation function (ACF) and the partial autocorrelation function (PACF) are used to 
identify the model. 
 

MATERIALS AND METHODS 
 

The pick-wise coconut yield from 1955 to 1978 at Bandirippuwa estate of the Coconut 
Research Institute, Lunuwila was used in this study. The data were analysed using the SPSS package 
on the mainframe computer as the University of Canterbury, NewZealand. 
 
 
----------------------- 
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Let the series (Zt, Zt-1… … ..Zt-n+1 be observed at discreate equally spaced points in time, where Zt be 
the present value of the series. Let Xt be the series of identically independantly distributed random 
variables with zero mean and constant variance. The general nonseasonal ARIMA (p,d,q) can be 
written as 
 
 (l-B)d (1-?1,B-… … … … .. ?pBp) Zt = (1-Q1 B- … … … QqBq) Xt 
 
Where p and q are the respective orders of nonseasonal autoregressive part and moving average part of 
the model and B is a back shift operator on the index of time series such that, BmZt=Zt-m and BmXt = 
Xt-m (m is a positive integer). ?i(i=1,2,… … .p) and Qi (j=1,2,… … ..,q) are the non seasonal parameters 
of the model. The number of the non-seasonal difference is d. Seasonal series generally cannot make 
stationery only from the non seasonal differences Let D be the number of seasonal differences, S be the 
length of seasonality, and P and Q be the respective orders of the seasonal AR part and MA part. 
 
Then the multiplicative seasonal ARIMA model is written as; 
 
 (1-B)d (1-Bs)D (1 - ?1 B- … … .. - ?pBp) (1-Q1sBs … … - QpsBP-s)Zt 
 

?isB- .... ? 
isBq) (1 – Q1sBs-.... QqsBq-s)Xt 

 
Where ois is (i = 1,2,… … ,p) and ois (j = 1,2,… … q) are the seasonal parameters of AR part and MA 
part respectively. This model is denoted by ARIMA (p,d,q) x (P,D,Q) x S. The autocorrelation of time 
lag T (T=1,2 .... ) is the correlation between Zt and Zt-T and the partial autocorrelation of time T is the 
correlation between Zt and Zt=T with Zt+j (j = 1,2,… … T-1) held fixed. The sample autocorrelation 
coefficient of the partial autocorrelation of lag k are denoted by rk and Pk respectively. (Malridakis, S 
and Wheelwright S/C, 1978). 
 

Results and Discussion 
 

The plot of the 144 data points of the original data clearly exhibits a periodic components 
consisting of regular seasonal pattern. Different sizes of the amplitude of the series suggests that the 
original series is nonstationary. The fig. 1 shows the plot of autocorrelation coefficients for the data for 
time lags 1,2,3,… … ..24. The dashed horizontal lines indicate the 95% probability limits for a purely 
random process. 
 

As the seasonal autocorrelation coefficients; etc. are highly significantly different from zero it 
confirms the existance of strong seasonal pattem with a length of six period. The need for seasonal and 
nonseasonal differencing is therefore abvious. The stationary of the series was achieved by the 
combination of one degree of nonseasonal differencing and one degree of seasonal differencing. The 
plots of autocorrelation function and partial autocorrelation function of the stationary series are 
exhibited in of Fig. 2 and Fig. 3 respectively. 
 

The seasonal ACF truncates to zero and the seasonal PACF drops to zero. Further the 
significance of the first seasonal autocorrelation coefficient is suggesting the presence of seasonal 
moving average part with order one and confirmed that the seasonal component could be represented 
by ARIMA (0,1,1) x 6. Non seasonal autocorrelation coefficients of lag 1 and lag 2 significantly 
different from zero. Also the non seasonal autocorrelation coefficients at lag 4 is significant while at 
lag 8 and lag 10 are just on the houndary of the 95% confidence limits. The nonseasonal partial 
autocorrelation coefficients at lag 2 lies well outside the 95% significant interval and at lag 4 just 
touches the confidence limits. The rest of the non seasonal autocorrelation coefficients and partial 
autocorrelation coefficients oscilate around zero. The nonsignificance of the coefficient at lag 1 could 
be occuffed due to inherent random variation of the series. However the simultaneous  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 ACF of the original data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



Fig. 2 ACF of 1st and 1lt 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 PACF of 1st and 1lt 
 

inspection of both ACF and PACF would suggest that the nonseasonal component could be 
represented by the models of ARIMA (2,1,0), ARIMA (0,1,2) and ARIMA 1,1,1). Therefore the 
ARIMA models of (0,1,2,) x (0,1,1) x 6, (2,1,0) x 6, and (1,1,1) x (0,1,1) x 6 were considered as 
possible process to represent the progina; series. The three. models are denoted by the model 1,2 and 3 
respectively. 
 

The Table 1 lists estimates of the three parameters in all three models along with their errors 
and correlation matrices. 
 

Table 1. Different estimates for the 3 process 
Model Parameters Std. error 

of the 
Parameters 

 
Correlation matrix parameters 

I 
 
 
 

II 
 
 
 

III 

Q1 = 0.18077 
Q2 = 0.41823 
Q3 = 0.91875 

 
? 1 = 0.00375 
? 2  = -0.3540 
? is = 92656 

 
? 1 = 0.48362 
Q1 = -0.58974 
Qis = 0.91150 

0.074 
0.074 
0.025 

 
0.077 
0.078 
0.024 

 
0.496 
0.458 
0.028 

1.00 
-0.032 
0.014 

 
1.00 
0.013 
0.027 

 
1.00 
0.989 
0.436 

 
1.00 

-0.093 
 
 

1.00 
0.014 

 
 

1.00 
0.439 

 
 

1.00 
 
 
 

1.00 
 
 
 

1.00 
 

 



 
The model 1 has the lowest standard errors for the parameters and also lowest correlation 

coefficient between the nonseasonal parameters and the seasonal parameter. The Table 11 shows the 
diagnostic chi-square statistics for the residuals of the three models at lags of 6, 12, 18, 24 and 30. 
 

Table 2. X2 value of the 3 identified models at different lags. 
 

Lag Model I Model II Model III DF 
06 
12 
18 
24 
30 

4.20ns 
12.93ns 
16.79ns 
20.36ns 
26.33ns 

8.60ns 
17.01ns 
20.77ns 
24.26ns 
29.57ns 

17.34*** 
25.71** 
31.25** 
33.34* 
37.36 

3 
9 
15 
21 
27 

 *P=0.05 **P=0.01 ***P=0.001  
 

The nonsignificant lowest chi-square statistics had been observed in the model l for all. lags. 
Thus, by comparison it can be confirm that the model, ARIMA (0,1,2) x (0,1,1) x 6 would be the most 
appropriate process to the set of data used in this paper. Plot of the residual autocorrelations of this 
model shows that the independence assumption of the residual is satisfied. All the values lie within the 
95% significance interval which reveals that the residual has no particular pattern. The model l 
therefore adequately fits for the crop wise data in Bandirippuwa estate. 
 

The multiplicative seasonal ARIMA model for the data is written as (1-B) (1.B6)Zt = 
(1-0.01808B - 0.4182B2) (1 - 0.9188B6)Xt. The forecasts values from the 145th observation (1st 
harvest of 1979) to 150th observation (6th harvest of 1979) and their 95% confidence limits along with 
the percentage values are listed in Table 3. 
 

Table 3 
 

  95 percent limits   
Period Forecast Lower Upper Actual Percetage 

error 
145 
146 
147 
148 
149 
150 

88,322 
1,39,293 
1,45,842 
1,05,822 

61,329 
67,750 

75,239 
1,02,496 
1,13,059 

90,161 
41,960 
60,170 

1,51,315 
2,06,090 
1,70,626 
1,61,483 

78,462 
95,686 

99,957 
1,50,166 
1,49,830 
1,05,428 

54,710 
74,902 

11.64 
7.24 
2.66 
0.37 

12.10 
9.55 

 
 

Conclusion 
 

The main aim of this paper is to identify an appropriate time series process to a set of coconut 
data. Having applied the Box Jenkin methodology, it was shown that a multiplicative seasonal ARIMA 
process of (0,1,2) x (0,1,1) x 6 could fit to the particular set of ata at Bandirippuwa estate. This model 
is useful in forecasting the both annual and crop wise yield. The model is also flexible because the 
forecast can be done without any physical variables. The percentage error in prediction is reasonably 
low. Though the confidence intervals obtained in this example are bit wider such intervals provide 
more information to the estate managers for their future plarming programme. 
 



The main difficulty in this method is the selection of an suitable model. Though Box Jenkins 
methodology provide detailed techniques for identification of the nonseasonal model, identification of 
seasonal ARIMA models have not been extensively studied. 
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