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Abstract 

 Coconut is both socially and economically important crop in tropical and subtropical countries, 
thus the conservation of existing diversity of its germplasm is vital to maintain biodiversity, sustain 
crop production and utilisation of germplasm for crop improvement strategies. The recalcitrant storage 
behavior and large size of the coconut seed make it impossible to use as a germplasm storage material. 
Cryopreservation is an ideal means of long-term storage of germplasm which offers long-term storage 
capability with minimal storage space and maintenance requirements. The coconut embryo has been 
now adapted by various researchers for the purpose of germplasm exchange and it is now being 
routinely applied in germplasm collection and exchange activities with sufficient germination rates. 
The aim of the present study was to determine the effect of different coconut embryo transport/ storage 
methods [as solid endosperm plugs under cold temperature, embryos cultured in Solidified Agar 
Medium (SAM) or KCl solution under room temperature] on cryopreservation of plumules using 
encapsulation/dehydration method. The results revealed that plumules excised from embryos 
transported/ stored in SAM and pretreated with 1.0M sucrose could be cryopreserved with 71.8% 
survival and 56% recovery rates. The survival and recovery could be further increased up to 77.5% and 
65% respectively by supplementation of 1.0M sucrose with 20 µM ABA. 
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Introduction 

 Coconut is both socially and economically 
important crop in tropical and subtropical 
countries, thus the conservation of existing 
diversity of its germplasm is vital to maintain 
biodiversity, sustain crop production and 
utilisation of germplasm for crop improvement 
strategies.The recalcitrant storage behavior and 
large size (Chin and Pritchard, 1988) of the 
coconut seed make it impossible to use as a 
germplasm storage material. Traditionally, 
coconut genetic resources are preserved as whole 
plants in field gene banks. These field gene 
banks in different countries are comprised of a 
total of 1416 coconut accessions (Batugal, 
2005). However, conservation in the field gene 
banks is subjected to risks of losses caused by 
biological and climatic hazards. The most recent 
example is the threat of the deadly disease Bogia 
Coconut Syndrome on the survival of the 
international collection of the South Pacific's 
coconut accessions, held at a field gene bank in 
Papua New Guinea (http://www.nature.com/ 
news/south-pacific-coconut-gene-bank-under-
threat-1.11792). In addition, field gene banks 
require huge land areas and routine maintenance 
is very expensive. Cryopreservation is an ideal 
means of long-term storage of germplasm which 
offers long-term storage capability with minimal 
storage space and maintenance requirements. 
This method enables maximum stability of 
phenotypic and genotypic characteristics of 
stored germplasm (Engelmann, 1997). It also 
provides the option for long-term backup of 
germplasm collections that might be at risk. 

 Bajaj in 1984 reported the earliest attempt 
on the cryopreservation of coconut using whole 
zygotic embryo. Germination of a single embryo 
after freezing was reported by using DMSO and 
slow freezing in a classical protocol (Chin et al., 
1989). Successful cryopreservation of coconut 
embryos from immature nuts (7-8 months after 
pollination) and mature nuts has been reported 
(Assy-Bah and Engelmann, 1992a, b). 
Inadequate recovery conditions led to the low 
recovery of plantlets in spite of high survival 
rates obtained after cryopreservation. Coconut 
plumule (embryo meristem and first leaves), 
which is known to be free of viral diseases, 

appears to be an interesting starting material for 
cryopreservation (Malaurie et al., 2002) and has 
been conserved using encapsulation/dehydration 
method. Encapsulation-dehydration, a 
vitrification-based cryopreservation procedure is 
gaining importance and has greater potential for 
broad applicability. In this method, cell water is 
removed through osmotic and evaporative 
dehydration that increases cell viscosity to a 
critical point at which water forms a meta-stable 
glass on exposure to ultralow temperatures. 
Pretreatment with sucrose (0.5-1.5 M) and 
drying on silica gel are the most common ways 
of achieving osmotic and evaporative 
dehydration respectively (Padro et al., 2012; 
Sharaf et a.,l 2012). N’Nan et al., (2008) and 
Malaurie et al., (2002) have assessed the effect 
of different sucrose concentrations and 
dehydratyion regimes for coconut and achieved 
40-70% survival after cryopreservation by 
encapsulation/ dehydration method. Apart from 
the embryo, pollen which is the other allowed 
material for coconut germplasm exchange has 
been checked for its viability at low and ultra 
low temperatures (Karun et al., 2006; Karun and  
Sajini, 2010). 

 Characteristics of coconut seed (bulky, 
heavy and recalcitrant) limited the collection of 
germplasm from some of the geographic areas. 
These limitations however had serious impact on 
genetic resource conservation as large amount of 
coconut genetic diversity is located in remote 
areas. International exchange of coconut 
germplasm has specific recommendations 
(Frison et al., 1993), where it has been 
established that movement of germplasm should 
be done only on the form of embryo culture or 
pollen (Diekmann, 1999; Hocher et al., 2004; 
Malaurie, 2001). The coconut embryo has been 
now adapted by various researchers for the 
purpose of germplasm exchange and it is now 
being routinely applied in germplasm collection 
and exchange activities (Engelmann, et al 2002). 
Even though this technique works well for some 
varieties, adjustments need to be done for certain 
varieties for large scale germplasm exchange 
activities. The simplest procedure of collecting 
embryos consists of collecting endosperm plugs 
together with the embryo and transport under 
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aseptic cold conditions (Rillo and Paloma 1991). 
Other protocols (Assy-Bah et al., 1987; Karun, 
2001) involve disinfection of embryos and in 
vitro inoculation of embryos in a growth 
medium. Method of transportation/ storage 
affects embryo quality which in turn plays a 
crucial role in success of cryopreservation. This 
is particularly important when considering 
international exchange of coconut germplasm for 
the establishment of multi-site International 
Coconut Genebanks (Batugal and Jayashree 
2005). 

 Thus, the aim of the present study was to 
determine the effect of different coconut 
germplasm transport/storage methods on 
cryopreservation of plumules using 
encapsulation/dehydration method. 

Materials and methods 

Plant material 

 Mature nuts were obtained from 12 month 
old nuts of the variety Sri Lanka Tall.  The nuts 
were collected from palms at Bandirippuwa 
Estate, Coconut Research Institute of Sri Lanka.  

Preparation of embryos for transportation/ 
storage  

 Three different transport/store conditions 
were tested. In the first method solid endosperm 
plugs were extracted using a cock borer as 
described by Rillo and Paloma (1991), washed in 
tap water and in 95% ethanol quickly to remove 
the fats, and then disinfected with 100% 
commercial bleach (5.25% active chlorine)  for 
20minutes. The plugs are then washed three 
times with sterile water and packed in sterile 
polypropylene bags and refrigerated for 10 days 
(Figure 1a). In the second and third methods, 
dissected coconut embryos were disinfected with 
20% commercial bleach for 5 minutes, rinsed 
with sterile water for three times, cultured in 
SAM [ 0.45% (w/v), Sigma] and KCl solution 
(16.2 g/L) respectively (Figure 1b and c 
respectively) and then stored at 27ºC in the dark 
for 10 days. After the storage period, the 
endosperm plugs were re-sterilized in 100% 
commercial bleach for 20 minutes and embryos 
were dissected inside a laminar air flow cabinet 
(Figure 1d). The embryos dissected from 

endosperm plugs and the embryos stored in 
SAM and KCl  (Figure 2e) were then disinfected 
with 20% commercial bleach for 5 minutes and 
washed with sterile water for 5 times before 
dissecting plumules. Plumules were dissected as 
described by Chan et al., (1998) using stereo 
binocular under laminar flow conditions 
(Figure1f).   

 

Figure 1. Different embryo transport/store 
methods and subsequent steps 
during plumule isolation. a. The 
endosperm plugs packed in sterile 
polypropylene bags. b. Embryos 
cultured in SAM. c. Embryos 
cultured in KCl solution. d. 
Dissecting of embryos from 
endosperm plug. e. Mature 
embryos. f. Dissecting plumule. 
Scale Bars 6 cm in a, 2 cm in b and 
c, 3 cm in d, 1.5 cm in e, 2 cm in f.  

 
Encapsulation / dehydration and 
cryopreservation 

 Dissected plumules were precultured on 
solid Eeuwens Y3 growth medium (Eeuwens, 
1976) for 4-7 days in order to screen the 
contaminated explants. The plumules were 
encapsulated in alginate beads composed of 3% 
(w/v) low viscosity alginic acid (Sigma 
Chemical Co. USA) in calcium free liquid Y3 
medium (pH 5.8) and allowed to polymerize for 
45 min in liquid Y3 medium with 100 mM CaCl2 
and 0.15 M sucrose. Beads were then blotted dry 
on sterile filter papers to remove surface 
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moisture. Encapsulated plumules were then 
subjected to pretreatment in cryoprotective 
medium (sucrose/ sucrose+ABA). Groups of 20 
beads were put in each 125 mL Erlenmeyer flask 
containing 30 mL cryoprotective medium and 
shaken on a rotary shaker set at 90 to 100 rpm, at 
27 ± 1ºC in the dark for 3 days. The beads were 
rapidly surface dried by blotting with sterile 
filter papers. Dehydration of beads (batches of 
20) was carried out for 16 h inside glass jars by 
placing on top of 40 g dried silica gel separated 
by a filter paper. Half of the dehydrated beads 
were transferred to 2 mL cryotubes and directly 
plunged in to liquid nitrogen at least for 2 h. The 
other half of the beads was cultured in the solid 
Y3 recovery medium. 

Pretreatment in sucrose  

 Two sucrose concentrations were tested 
for the pretreatment step for each of the embryo 
transport/storage conditions. Encapsulated 
plumules which were dissected from the 
embryos (Sri Lanka Tall variety) stored under 
three conditions were pretreated in the standard 
Y3 medium  (Eeuwens 1976) supplemented with 
either 0.75 M or 1.0 M sucrose. 

Pretreatment in ABA  

 Incorporation of abscisic acid in to the 
pretreatment medium was tested for two 
transport conditions. Plumules were dissected 
from embryos stored in SAM or in KCl solution. 
Encapsulated plumules were pretreated in the 
liquid Eeuwens Y3 medium, enriched with 1.0 M 
sucrose alone or in combination with three ABA 
concentrations (10, 20 and 40 µM). 

In vitro culture and assessment of survival 
and recovery 

 Alginate beads containing plumules of 
control treatments (pretreated with 
cryoprotectant only or pretreated and dehydrated 
in silica gel and not cryopreserved) were directly 
cultured in 24 x 150 mm test tubes containing 20 
mL Eeuwens medium (Eeuwens, 1976) with 
modifications (Sandoval et al., 2003) whereas 
cryopreserved beads were cultured after thawing 
inside a 40ºC water bath for 3 min. The medium 
was supplemented with 0.12 M sucrose and the 
pH was adjusted to 5.0 before adding charcoal. 

The medium was solidified with 4 g/L Gelrite. 
Cultures were kept in the dark at 27 ±1°C until 
first few leaves emerged and then maintained in 
12 h light. 

 The survival was assessed as the 
percentage of plumules manifesting new tissue 
growth (indicated by any sign of growth such as 
swelling, development of new leaf primordia 
and/or callus formation). Here, survival was 
chosen as a more sensitive indicator in the 
protocols tested in addition to the recovery of 
plumules and assessed after 2 months of in vitro 
culture. The recovery of plumules (indicated by 
the ability of plumules to grow in to plantlets) 
following desiccation alone or desiccation and 
freezing was assessed after 6 months in culture.  

Statistical analysis 

 The experiments were arranged in a 
complete randomized design with two to three 
replicates of 10 plumules per treatment. 
Contaminated explants were eliminated before 
collecting data. Data was subjected to Analysis 
of Variance and Fisher’s Lest-Significant test 
using GenStat 10.1 software. 

Results 

Combined effect of embryo transport/store 
conditions and sucrose pretreatment  

 In this experiment, the effect of three 
different embryo transport/store conditions were 
tested on cryopreservation of coconut plumules. 
As sucrose has been reported to be an effective 
cryoprotectant for coconut plumules (N’Nan et 
al., 2008), studies were carried out using two 
different sucrose concentrations which have 
shown positive effects on coconut plumule 
cryopreservation.  

Survival of plumules 

 Encapsulated plumules (without any of the 
treatments) did not show any difference in 
survival and re-growth in comparison with 
uncoated controls (data not shown). The survival 
of encapsulated plumules treated with 
cryopretectant but not dehydrated in silica gel, 
and not frozen plumules (which were not stored 
in liquid N2) was always over 95% for all 
transport  methods  (Table  1).  There  was  no  
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       Table 1. Survival percentages of non-cryopreserved plumules as influenced by different  
 transport methods 

Sucrose 
concentration 

 0.75M 1.0M 

Dehydration 
 

 
 

No Yes No Yes 

 Endosperm plugs 95.5 32.5 100.0 56.9 
Transport method SAM 100.0 72.2 100.0 100.0 

 KCl solution 100.0 54.8 100.0 30.6 
 

 

Table 2. Survival percentages of cryopreserved plumules as influenced by different  
               transport methods 

Sucrose 
concentration 

 0.75M 1.0M 

Dehydration 
 

 
 

No Yes No Yes 

 Endosperm plugs 25.0 42.6 5.6 34.7 
Transport method SAM 21.1 46.4 0.0 71.8 
 KCl solution 12.5 63.5 0.0 12.5 

 

 

Table 3. Recovery percentages of non-cryopreserved plumules as influenced by  
               different transport methods 

Sucrose 
concentration 

 0.75M 1.0M 

Dehydration 
 

 
 

No Yes No Yes 

 Endosperm plugs 95.5 0 100.0 27.5 
Transport method SAM 100.0 27.8 95.8 80.0 
 KCl solution 100.0 25.4 100.0 22.2 

 

 

Table 4. Recovery percentages of cryopreserved plumules as influenced by different  
               transport methods 

Sucrose 
concentration 

 0.75M 1.0M 

Dehydration 
 

 
 

No Yes No Yes 

 Endosperm plugs 0.0 4.5 0.0 5.6 
Transport method SAM 0.0 18.2 0.0 56.8 
 KCl solution 0.0 19.8 0.0 0.0 
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significant difference in plumule survival 
following the two concentrations of sucrose 
application (p = 0.345). However, plumule 
survival after dehydration in silica gel 
significantly (p=0.011) depended on embryo 
transport/ storage method and sucrose treatment; 
endosperm plugs 32.5% and 56.9%, in KCl 
54.8% and 30.6%, in SAM 72.2% and 
100%.(values are for 0.75 M and 1.0 M sucrose 
respectively).  

 Encapsulated plumules pre-treated with 
sucrose, either in 0.75 M or 1.0 M showed very 
low survival rates ranging from 0 to 25.0 %, 
when they were cryopreserved directly without a 
dehydration step (Table 2). No significant 
difference (P = 0.524) in survival was observed 
in dehydrated and cryopreserved  plumules 
transported by three methods tested. But higher 
survival percentages were recorded in the 
plumules transported as embryos cultured in 
SAM (71.8% in 1.0 M sucrose) and KCl (63.5% 
in 0.75 M sucrose). Sucrose concentration in the 
preculture medium did not affect significantly (P 
= 0.135) on plumule survival. 

Recovery of plumules 

 Plumules which were non-dehydrated and 
non-cryopreserved showed high recovery rates 
(> 95%) irrespective of the transport/store 
condition and the sucrose concentration (table 3). 
However, dehydration caused a decrease in 
recovery of plumules which was significantly 
different among plumules excised from embryos 
transported/ stored in different ways (P < 0.001) 
(Table 3). None of the dehydrated plumules 
recovered when the embryos were transported as 
endosperm plugs and pretreated with 0.75 M 
sucrose. The greatest recovery (80%) was 
obtained when non cryopreserved plumules were 
excised from embryos transported in SAM and 
pretreated with 1.0 M sucrose. Whereas, the 
recovery of unfrozen plumules of the two other 
transport conditions (plugs and KCl) ranged only 
between 22.2% and 27.8%, respectively (Table 
3) 

 Rapid freezing of plumules without 
dehydration resulted almost complete inhibition 
of plant recovery in all treatments (Table 4). 
There was a significant interaction effect (P = 

0.019) of transport condition, sucrose 
concentration and dehydration. Although two 
sugar concentrations tested were able to protect a 
proportion of plumules from dehydration 
damage, only embryos which were transported in 
SAM and pretreated with 1.0 M sucrose showed 
significantly high recovery (56.8%) after cryo 
storage.  

Effect of ABA in pretreatment medium 

 In an attempt to improve the percentage 
recovery, encapsulated plumules were 
precultured in 1.0 M liquid sucrose medium 
containing different ABA concentrations for 
three days prior to dehydration and freezing. 
Two transport/store conditions SAM and KCl 
were tested. The plumules transported/stored as 
embryos cultured on SAM medium showed 
higher survival rates (58.8% and 77.5% in 10% 
and 20% ABA respectively) after dehydration 
and cryopreservation compared to the plumules 
transported/stored as embryos in KCl (Table 5). 
Maximum survival rate of the plumules 
transported in KCl was recorded as 41.2% when 
they were pre-treated in either 20 or 40 µM 
ABA. In contrast, this is a remarkable increase 
of survival after cryopreservation when 
compared to the survival (12.5%; Table 2) 
obtained for plumules transported in KCl and 
pre-treated in 1.0 M sucrose devoid of ABA. A 
very low survival ranging from 0.0% to 18.8% 
was recorded after cryo storage (Table 5) of non 
dehydrated plumules in both transport conditions 
but none of them developed in to plantlets later 
on (Table 6). Regardless of the ABA 
concentration embryo transport method had a 
significant effect on survival (P=0.01) and 
recovery of cryopreserved plumules. After 
freezing, the best regrowth of plumules was 
observed for plumules pretreated in 10 µM ABA 
(40.0%) and 20 µM ABA (65.0%) when 
embryos were stored in SAM (Table 6).  

Recovery and plant regeneration 

 Surviving plumules resumed growth at 
variable pace but started after about four weeks 
at the earliest (Figure 2a). Leafy shoots mostly 
without roots were recovered after freezing 
(Figure 2b and d). Plumules that turned brown 
after cryopreservation  did  not  recover  in  to  
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Table 5. Effect of ABA concentration and transport/store condition on survival percentages  
               of encapsulated cryopreserved plumules of coconut 

Embryo transport method  SAM KCl 
Dehydration 
 

 
 

No Yes No Yes 

 0 12.5 52.5 0.0 16.2 
ABA concentration (µM) 10.0 0.0 58.8 0.0 21.2 
 20.0 12.5 77.5 5.0 41.2 
 40.0 18.8 50.0 6.2 41.2 

 

Table 6. Effect of ABA concentration and transport/store condition on recovery percentages  
               of encapsulated cryopreserved plumules of coconut 

Embryo transport method  SAM KCl 
Dehydration 
 

 
 

No Yes No Yes 

 0 0.0 6.2 0.0 6.2 
ABA concentration (µM) 10.0 0.0 40.0 0.0 11.2 
 20.0 0.0 65.0 0.0 18.8 
 40.0 0.0 35.0 0.0 0.0 

 

 

Figure 2. Different development stages of plumules after cryopreservation. a. Re-growth starting after 
four weeks after cryopreservation. b. Germinating plumule in the recovery medium. c. 
Initiation of callus like growth after cryopreservation. d. Complete shoot developed after cryo 
storage. e. Complete/rooted plantlets developed from recovered shoots. Scale Bars 5 mm in a, 
1 cm in b, 5 mm in c, 1.5 cm in d, 5 cm in e.  
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plantlets. Very rarely plumules exhibited 
survival by initiating callus like growth (Figure 
2c) with no further development. Root 
development of the surviving shoots in liquid Y3 
medium was achieved by giving a IAA plus (200 
µM) for two days (figure 2e). Majority of 
recovered plantlets were contaminated during 
sub-culturing and a very few plants were 
acclimatized in soil. 

Discussion 

 The potential of exchanging and storing 
healthy germplasm is vital for the conservation 
and use of genetic resources for coconut 
breeding programmes. Coconut zygotic embryos 
are now routinely being transported between 
numerous laboratories to support germplasm 
collection and exchange activities. (Batugal and 
Engelmann 1998; Engelmann et al., 2002) 
However, even though coconut embryos are 
being transported in different conditions and 
they ensure high rates of embryo germination 
(N’Nan et al., 2012; Sisunandar et al., 2010) 
these germplasm exchange procedures have not 
been evaluated for the purpose of storage of 
coconut germplasm for long term conservation. 
In this study, coconut plumules originally 
transported/ stored in different conditions were 
successfully cryopreserved using encapsulation/ 
dehydration. 

 It has been demonstrated that successful 
cryopreservation is achieved by avoiding the 
formation of intra cellular ice crystals which are 
formed during the freezing process causing 
lethal physical damage to tissues (Gale et al., 
2007). Encapsulation/dehydration is an effective, 
widely using vitrification method for freezing 
shoot apices of different plant species from both 
temperate and tropical origin (Gonzalez-Arno 
and Engelmann 2006) since it is a simple and 
inexpensive method providing high level of 
genetic stability (Sakai et al., 1990; 
Khoddamzadedh et al., 2011).  

 In the encapsulation/dehydration method, 
tissues are dehydrated by evaporative 
dehydration (Shibli et al., 2001) to minimize the 
intra cellular water content. The exposure of 
tissues directly to dehydration step causes 
harmful effects due to osmotic stress  (Touchell 

et al., 2002). Normally, preculture in sugars 
(Sharaf et al., 2012); mainly sucrose or other 
cryoprotectants such as sugar alcohols (Ford et 
al., 2000), glycerol (Rajasekaran, 1996) and 
DMSO (Reed, 1990) is used to increase the 
tolerance of tissues to dehydration before the 
immersion in liquid nitrogen. Sucrose 
concentrations ranging from 0.75M -1.0M are 
suitable for ensuring high survival rates after 
cryopreservation  for crops such as mulberry, 
apple, grapevine and citrus (Paul et al., 2000; 
Wang et al., 2000; Wang et al., 2002; Padro et 
al., 2012;). There are reports of using sucrose as 
a cryoprotectant for the cryopreservation of 
plumule explants of coconut (Hornang et al., 
2001; N’Nan et al., 2008). N’Nan and others 
reported 39% survival and 16% recovery of 
coconut plumules after cryo storage when the 
encapsulated plumules were pretreated with 
0.75M sucrose (N’Nan et al., 2008). On the 
other hand, when the plumules were pretreated 
with 1.0 M sucrose, the survival rate was 
approximately 34% and the recovery was 10%. 
It is noted that the embryos used for the above 
experiments have been transported as endosperm 
plugs only. In this study we obtained similar 
results for the survival of plumules transported 
as endosperm plugs when precultured in the two 
sucrose concentrations 0.75 M (42.6%) and 1.0 
M (34.7%). However, the positive effect of 
transporting embryos in SAM was observed by 
obtaining considerably higher survival rate 
(71.8%) when cryoprotected in 1.0 M sucrose. 
This was further confirmed by obtaining more 
than 56% recovered plantlets after 
cryopreservation when the plumules were 
transported in SAM. The results obtained are 
interesting as it is shown that the medium 
surrounding the coconut embryo (endosperm or 
the supplemented medium) can be replaced by 
agar alone without nutrition factors which ensure 
higher survival and recovery rates. These 
findings will permit convenient exchange of 
coconut embryos between laboratories and allow 
efficient germplasm distribution among the 
coconut growing countries. 

 The role of ABA in desiccation and 
freezing tolerance has been demonstrated not 
only in higher plants but also in lower plants 
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such as bryophytes (Senaratna et al., 1989; 
Werner et al., 1991). Pretreatment with ABA has 
been shown to be effective for cryopreservation 
of several moss species (Pence, 1998). There are 
reports of successful plant material 
cryopreservation by incorporating ABA to the 
pretreatment medium (Kendall et al., 1993; Na 
and Kondo, 1996; Fang et al., 2004; Uchendu et 
al., 2011). A combination of ABA and sucrose 
pretreatments improved the survival of 
cryopreserved coconut plumules (Bandupriya et 
al., 2007). Addition of ABA to the pretreatment 
medium increased the recovery of cryopreserved 
plumules by recording 38% (Malaurie et al., 
2006) and 39% (Bandupriya et al., 2007) 
recovery when compared to the recovery rates 
(20%) obtained previously by N’Nan et al in 
2008. However these experiments have been 
carried out by transporting embryos as 
endosperm plugs (Malaurie et al., 2006) or 
without applying any transport condition 
(Bandupriya et al., 2007).  In this paper we 
describe significantly high (65%) recovery of 
cryopreserved plumules which were initially 
transported/stored in SAM and when they were 
pretreated in 1.0 M sucrose supplemented with 
20 µM ABA.   These findings show that ABA 
addition to the pretreatment medium improves 
the recovery after cryopreservation significantly. 
Moreover it is shown that the effect of ABA has 
been elevated by the use of SAM as a transport 
support medium for the exchange of coconut 
embryos and reveals the importance of the 
selection of a correct transport conditioning of 
embryos prior to cryopreservation.     
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