Partial Characterization of Polysaccharides Isolated from Defatted Desiccated Coconut Kernel

  • Loku Liyana Waduge Chandi Yalegama Coconut Research Institute, Sri Lanka
  • Desiree Nedra Karunaratne University of Peradeniya, Sri Lanka
  • Ramaiah Sivakanesan University of Peradeniya, Sri Lanka
Keywords: Coconut kernel, pectin, hemicellulose, cellulose


Industrial processing of coconut oil generates considerable biomass of dehydrated defatted coconut kernel (DDCK) which is composed of food-grade fiber. The objective of this study was to separate and isolate polysaccharides and oligosaccharides in defatted coconut kernel, and to determine the partial structure using sugar profile. Coconut cell wall polysaccharides (CCWP) obtained from DDCK were used to sequentially extract pectin (with 5% ammonium oxalate-oxalic acid), HCI (with 4% NaOH), HCII (with 10% NaOH), HCIII (with 17.5% NaOH) and the remaining fraction as non-extractible matter referred as NaOH non-extractive. Results indicated that CCWP composed of 19% pectin, 29.6% HCI, 12% HCII, no detectable HCIII and NaOH non-extractive of 15%. The sugar profile of pectin, was 6.14% rhamnose, 3.31% arabinose, 61.72% mannose and 18.71% galactose. HCI composed of rhamnose 13.29%, arabinose 4.49%, xylose 22.84%, mannose 50.98%, galactose 5.9% and glucose 3.39%. HCII contained rhamnose 37.12%, arabinose 3.35%, Mannose 27.15% and galactose 5.76%, while NaOH non-extractive contained rhamnose 22.5%, mannose 23.95%, galactose 16.35% and glucose 37.05%. Partial hydrolysis followed by concentration with Sephadex G15 size exclusion chromatography was able to separate oligosaccharide having rhamnose 15.3%, mannose 52.5% and galactose 32.2% from pectin while xylose 0.6%, mannose 95.6%, galactose 1.1% and glucose 2.7% from HCII. Results indicated the presence of rhamnogalactomannan and xylogalactoglucomanan in coconut kernel.


Ataei, D., hamidi‐Esfahani, Z., & Ahmadi‐Gavlighi, H. (2020). Enzymatic production of xylooligosaccharide from date (Phoenix dactylifera L.) seed. Food Science & Nutrition, 8(12), 6699-6707.

Coconut statistics (2021). Annual publication of coconut Development Authority, Sri Lanka.

Coconut oil: global production volume 2012/13-2022/23. (2022, October 12). Retrieved from

Del Rosario, R. R., & Gabuya, E. S. (1980). Preliminary studies on the polysaccharide composition of coconut and makapuno [mutant coconut] cell wall [study conducted at UPLB, Philippines]. Philippine journal of coconut studies, 5(1), 17-21.

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.

Eda, S., Akiyama, Y., KatŌ, K., Ishizu, A., & Nakano, J. (1983). Methylation analysis of cell wall polysaccharides from suspension-cultured cells of Nicotiana tabacum. Agricultural and biological chemistry, 47(8), 1783-1789.

Fu, G., Yue, P., Hu, Y., Li, N., Shi, Z., & Peng, F. (2018). Fractionation of DMSO-extracted and NaOH-extracted hemicelluloses by gradient ethanol precipitation from Neosinocalamus affinis. International Journal of Polymer Science, 2018.

Ghosh, P., Ghosal, P., Thakur, S., Lerouge, P., Loutelier-Bourhis, C., Driouich, A., & Ray, B. (2004). Cell wall polysaccharides of Brassica campestris seed cake: isolation and structural features. Carbohydrate polymers, 57(1), 7-13.

Olowokere, J. A., Odineze, C. M., Anidobu, C. O., Yerima, E. A., & Nnaemeka, B. I. (2019). Influence of soaking time and sodium hydroxide concentration on the chemical composition of treated mango seed shell flour for composite application. Journal of Applied Sciences and Environmental Management, 23(1), 21-28.

Hilz, H., Williams, P., Doco, T., Schols, H. A., & Voragen, A. G. (2006). The pectic polysaccharide rhamnogalacturonan II is present as a dimer in pectic populations of bilberries and black currants in muro and in juice. Carbohydrate polymers, 65(4), 521-528.

Ho, A. L., Kosik, O., Lovegrove, A., Charalampopoulos, D., & Rastall, R. A. (2018). In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria. Carbohydrate polymers, 179, 50-58.

Huang, L. Z., Ma, M. G., Ji, X. X., Choi, S. E., & Si, C. (2021). Recent developments and applications of hemicellulose from wheat straw: A review. Frontiers in Bioengineering and Biotechnology, 9, 690773.

Ji, L., Jie, Z., Ying, X., Yue, Q., Zhou, Y., & Sun, L. (2018). Structural characterization of alkali-soluble polysaccharides from Panax ginseng CA Meyer. Royal Society Open Science, 5(3), 171644.

Knez, Ž., Hrnčič, M. K., Čolnik, M., & Škerget, M. (2018). Chemicals and value added compounds from biomass using sub-and supercritical water. The Journal of Supercritical Fluids, 133, 591-602.

Lundqvist, J., Teleman, A., Junel, L., Zacchi, G., Dahlman, O., Tjerneld, F., & Stålbrand, H. (2002). Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydrate Polymers, 48(1), 29-39.

Olmos, J. C., & Hansen, M. Z. (2012). Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chemical Engineering Journal, 192, 29-36.

Mohd Nor, N. A. N., Abbasiliasi, S., Marikkar, M. N., Ariff, A., Amid, M., Lamasudin, D. U., ... & Mustafa, S. (2017). Defatted coconut residue crude polysaccharides as potential prebiotics: study of their effects on proliferation and acidifying activity of probiotics in vitro. Journal of food science and technology, 54, 164-173.

Price, N. P., Hartman, T. M., Faber, T. A., Vermillion, K. E., & Fahey Jr, G. C. (2011). Galactoglucomannan oligosaccharides (GGMO) from a molasses byproduct of pine (Pinus taeda) fiberboard production. Journal of agricultural and food chemistry, 59(5), 1854-1861.

Polari, L., Ojansivu, P., Mäkelä, S., Eckerman, C., Holmbom, B., & Salminen, S. (2012). Galactoglucomannan extracted from spruce (Picea abies) as a carbohydrate source for probiotic bacteria. Journal of agricultural and food chemistry, 60(44), 11037-11043.

Sengkhamparn, N., Verhoef, R., Schols, H. A., Sajjaanantakul, T., & Voragen, A. G. (2009). Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench). Carbohydrate Research, 344(14), 1824-1832.

Sritrakul, N., & Keawsompong, S. (2021). Polysaccharides in copra meal: extraction conditions, optimisation and characterisation. Int J Agric Technol, 17, 337-348.

Sun, R., Jones, G. L., Tomkinson, J., & Bolton, J. (1999). Fractional isolation and partial characterization of non-starch polysaccharides and lignin from sago pith. Industrial Crops and Products, 9(3), 211-220.

Van Audenhove, J., Bernaerts, T., De Smet, V., Delbaere, S., Van Loey, A. M., & Hendrickx, M. E. (2021). The structure and composition of extracted pectin and residual cell wall material from processing tomato: The role of a stepwise approach versus high-pressure homogenization-facilitated acid extraction. Foods, 10(5), 1064.

Soest, P. V. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of official Agricultural Chemists, 46(5), 829-835.

Xu, J. D., Li, M. F., & Sun, R. C. (2018). Successive fractionations of hemicelluloses and lignin from sorghum stem by sodium hydroxide aqueous solutions with increased concentrations. BioResources, 13(2), 2356-2373.

Yashoda, H. M., Prabha, T. N., & Tharanathan, R. N. (2005). Mango ripening—chemical and structural characterization of pectic and hemicellulosic polysaccharides. Carbohydrate Research, 340(7), 1335-1342.

WHISTLER, R. L. (1993). Hemicelluloses. In Industrial gums (pp. 295-308). Academic Press.

Yalegama, L. L. W. C., Karunaratne, D. N., & Sivakanesan, R. (2022). A Study on Acid Hydrolysis and Composition of Polysaccharides Concentrated from Coconut Kernel. CORD, 38, 30-38.

How to Cite
Yalegama, L. L. W. C., Karunaratne, D. N., & Sivakanesan, R. (2023). Partial Characterization of Polysaccharides Isolated from Defatted Desiccated Coconut Kernel. CORD, 39, 41-48.