Pollen Dispersal and Pollination Patterns Studies in Pati Kopyor Coconut using Molecular Markers

  • Siti Halimah Larekeng
  • Ismail Maskromo
  • Agus Purwito
  • Nurhayati Anshori Matjik
  • S. Sudarsono
Keywords: Coconut mutant, abnormal endosperm, parentage analysis, pollen movement, outcrossing rate, self pollination, SSR marker, SNAP marker

Abstract

Parentage analysis has been used to evaluate pollen dispersal in Kopyor coconut (Cocos nucifera L.). Investigations were undertaken to elucidate (i) the dispersal of pollen, (ii) the rate of self and out-crossing pollination, and (iii) the distance of pollen travel in Pati kopyor coconut population. The finding of this activities should be beneficial to kopyor coconut farmers to increase their kopyor fruit harvest and to support breeding of this unique coconut mutant. As many as 84 progenies were harvested from 15 female parents. As many as 95 adults coconut provenances surrounding the female parents were analyses as the potential male parents for the progenies. The adult coconut palms were mapped according to their GPS position. All samples were genotyped using six SSR and four SNAP marker loci. Parentage analysis was done using CERVUS version 2.0 software. Results of the analysis indicated that evaluated markers were effective for assigning candidate male parents to all evaluated seedlings. There is no specific direction of donated pollen movement from assigned donor parents to the female ones. The donated pollens could come from assigned male parents in any directions relative to the female parent positions. Cross pollination occured in as many as 82.1% of the progenies analyzed. Outcrossing among tall by tall (TxT), dwarf by dwarf (DxD), hybrid by hybrid (HxH), TxD, DxT, TxH, DxH, and HxD were observed. Self-pollination (TxT and DxD) occurred in as many as 17.9% of the progenies. The dwarf coconut was not always self pollinated. The presence of DxD, TxD, and HxD outcrossing was also observed. The donated pollens could come from pollen donor in a range of at least 0-58 m apart from the evaluated female recipients. Therefore, in addition to the wind, insect pollinators may have played an important role in Kopyor coconut pollination.

Author Biography

S. Sudarsono

PMB Lab., Department of Agronomy, Fac. of Agriculture, IPB, Jl. Meranti – Darmaga Kampus, Bogor 16680, Indonesia

References

Austerlitz F, Dick CW, Klein EK, Muratorio SO, Smouse PE, Sork VL. 2004. Using a genetic marker to estimate the pollen dispersal curve. Molecular ecology. 13:937-954.
Bown D. 1988. Aroid: Plants of the arum family. Oregon (US): Timber Press Portland.
Brody Jonathan R, Scott E Kern. 2004. History and principles of conductive media for standard DNA electrophoresis. Analytical Biochemistry 333 (1): 1–13.
Brumfield RT, Beerli P, Nickerson DA, Edwards SV. 2003. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18:249-256.
Burczyk J, Koralewski T. 2005. Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant population. Mol Ecol. 14:2525-2537.
Carneiro FS, Lacerda AEB, Lemes MR, Gribel R, Kanashiro M, Wadt LHO, Sebbenn AM. 2011. Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L. (Leguminosae) in the Eastern Brazilian Amazon as revealed by microsatellite analysis. Forest Ecology and Management. 262:1758-1765.
Creste S, Tulmann AN, Figueira A. 2001. Detection of single sequence repeat polymorphism in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Reporter 19:299-306.
Deb Mandal M, Shyamapada M. 2011. Coconut (Cocos nucifera L. - Arecaceae): In health promotion and disease prevention. Asian Pacific Journal of Tropical Medicine. 4(3):241-247.
Dick, C. W., Etchelecu, G. and Austerlitz, F., 2003. Pollen dispersal of tropical tree (Dinizia excels: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol. 12:753-764.
Dunphy BK, Hamrick JL, Schwagerl, J. 2004. A comparison of direct and indirect measures of gene flow in the bat-pollinated tree Hymenaea courbaril in the dry forest life zone of south-western Puerto Rico. Int J Plant Sci. 165: 427-436.
Herrera MM, Alan WM, James WB, David NK, Raymond JS. 2007. Usefulness of WRKY gene-derived markers for assessing genetic population structure: An example with Florida coconut cultivars. Scientia Horticulturae 115:19–26.
Kurniasih Surti. 2012. Pemanfaatan marka molekuler untuk mendukung perakitan kultivar unggul kakao (Theobroma cacao L.) [disertasi]. Bogor (ID): Institut Pertanian Bogor.
Lebrun P, Baudouin L, Bopurdeix T, Konan JL, Barker JHA, Aldam C, Herran A, Ritter E. 2001. Construction of linkage map of the Rennell Island Tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome. 44:962-970.
Lian C, Miwa M, Hogetsu T. 2001. Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine) by micro-satellite polymorphism. Heredity 87:88–98.
Marshal TC, Slate J, Krilek LEB, Pemberton JM. 1998. Statistical confidence for likehood based paternity inference in nature populations. Mol Ecol. 7:639-655.
Marsico, T.D., Jessica, J.H. and Romero-Saverson, J. 2009. Patterns of seed dispersal and pollen flow Quercus garryana (Fagaceae) following post-glacial climatic changes. J. Biogeogr. 36(5):929-941.
Maskromo I, H. Novarianto dan N. Mashud. 2007. Potensi pengembangan kelapa kopyor di Indonesia. Warta Penelitian dan Pengembangan Tanaman Industri Vol 13 No. 1.
Maskromo I, Novarianto H, Sudarsono. 2011. Fenologi pembungaan tiga varietas kelapa genjah kopyor pati. Di dalam: Roedhy P, Slamet S, Anas D, Nurul K, Dewi S, Sintho WA, editor. Prosiding Seminar PERHORTI Kemandirian Produk Hortikultura untuk Memenuhi Pasar Domestik dan Ekspor; 2011. Nov 23-24; Lembang, Indonesia. Bogor (ID): Perhimpunan Hortikultura Indonesia. Hlm 1002-1010.
Milleron Matias, Unai Lopez de Heredia, Zaida Lorenzo, Ramon Perea, Aikaterini Dounavi, Jesus Alonso, Luis Gil, Nikos Nanos. 2012. Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant. Ecology. 213:1715-1728.
Morin PA, Luikart G, Wayne RK, The SNP working group. 2004. SNPs in ecology, evolution and conservation. Trends Ecol Evol. 19:208-216.
Novarianto H, Maskromo I, Dinarti D, and Sudarsono. 2014. Production technology for Kopyor coconut seednuts and seedlings in Indonesia. International Journal on Coconut R & D. 30(2):31-40.
Novarianto, H dan Miftahorrachman. 2000. Koleksi dan konservasi jenis-jenis kelapa unik. Makalah poster dalam Simposium Pengelolalan Plasma nutfah dan Pemuliaan Bandung 22-23 September. Perhimpunan Ilmu Pemuliaan Indonesia.
Prabha SS, Indira EP, Nair PN. 2011. Contemporary gene flow and matting system analysis in natural teak forest using microsatellite markers. Current Science 101 (9):1213-1219.
Rajesh MK, Arunachalam V, Nagarajan P, Lebrun P, Samsudeen K, Thamban C. 2008. Genetic survey of 10 Indian coconut landraces by Simple Sequence Repeats (SSRs). Scientia Horticulturae 118:282–287.
Ramirez VM, Tablat VP, Kevan PG, Morillo IR, Harries H, Barrera MF, Villareal DZ. 2004. Mixed mating strategies and pollination by insects and wind in coconut palm (Cocos nucifera L. (Arecaceae)): importance in production and selection. Agricultural and Forest Entomology 6:155-163.
Rohde W, Kullaya A, Rodriguez MJB, and Ritter E. 1995. Genetic analysis of Cocos nucifera L by PCR amplification of spacer sequences separating a subset of copia-like EcoR1 repetitive elements. J Genet Breed. 49 : 179-186.
Sajib AM, M.M. Hossain, A.T.M.J. Mosnaz, H. Hossain, M.M. Islam, M.S. Ali, SH. Prodhan. 2012. SSR marker-based molecular characterization and genetic diversity analysis of aromatic landreces of rice (Oryza sativa L.). J. BioSci. Biotech 1(2): 107-116.
Sambrook J. and Russel DW. 2001. Molecular cloning: a Laboratory Manual. Third Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Samonte LJ, Mendoza EMT, Ilag LL, De La Cruz ND, and Ramirez DA. 1989. Galactomannan degrading enzyme in maturing normal and Makapuno and germinating normal coconut endosperm. Phytochemistry 28:2269-2273.
Santos GA. 1999. Potential use of clonal propagation in coconut improvement program. In Oropeza C, Verdiel JL, Ashburner GR, Cardena R, and Samantha JM (eds.) Current Advances in Coconut Biotechnology – Current Plant Science and Biotechnology in Agriculture. Kluwer Acad. Publ., London. Pp. 419-430.
Schuster WSF, Mitoon JB. 2000. Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity. 84:348-361.
Soenarsih Sri. 2012. Pala (Myristica spp.) Maluku Utara berdasarkan keragaman morfologi, kandungan atsiri, pendugaan seks tanaman dan analisis marka SSR [disertasi]. Indonesia (ID): Institut Pertanian Bogor.
Sudarsono, Sudrajad, Novarianto H, Hosang MLA, Dinarti D, Rahayu MR, Maskromo I. 2014. Produksi bibit kopyor true to type dengan persilangan terkontrol dan peningkatan produksi buah kopyor dengan polinator lebah madu. Laporan Akhir Program Hi Link. Bogor (ID): Institut Pertanian Bogor.
Sukendah 2009. Teknologi pembiakan kultur in vitro dan analisis molekuler pada tanaman kelapa kopyor. [disertasi]. Indonesia (ID): Institut Pertanian Bogor
Sutanto A, D. Sukma, C. Hermanto, and Sudarsono. 2014. Isolation and characterization of Resistance Gene Analogue (RGA) from Fusarium resistant banana cultivars. Emirates Journal of Food and Agriculture. 26(6):508-518.
Wattanayothin, S. 2005. The study on curd coconut hybrids. J. TNCEL 1(3):6-7.
Wattanayothin, S. 2010. Variety improvement of Makapuno. Proceedings of the XLIV COCOTECH Meeting, 5-9 July 2010, Samui Island, Thailand. pp. 96-108.
Published
2015-04-01
How to Cite
Larekeng, S. H., Maskromo, I., Purwito, A., Matjik, N. A., & Sudarsono, S. (2015). Pollen Dispersal and Pollination Patterns Studies in Pati Kopyor Coconut using Molecular Markers . CORD, 31(1), 46-60. https://doi.org/10.37833/cord.v31i1.70
Section
Articles