Genetic Relationships of Indigenous King Coconut (Cocos nucifera L.) Populations as Determined by SSR Markers

  • Muditha Kasun Meegahakumbura Uva Wellassa University
  • M. T. N. Indrachapa 3Department of Botany, University of Sri Jayawardenepura, Colombo, Sri Lanka
  • T. S. Baddegama
  • M. M. Hettiarachchi
  • H. D. M. A. C. Dissanayaka Genetics and Plant Breeding Division, Coconut Research Institute, Lunuwila, Sri Lanka
  • C. R. K. Samarasinghe Genetics and Plant Breeding Division, Coconut Research Institute, Lunuwila, Sri Lanka
  • P. R. Weerasinghe Genetics and Plant Breeding Division, Coconut Research Institute, Lunuwila, Sri Lanka
  • P. N. Dasanayake Department of Botany, University of Sri Jayawardenepura, Colombo, Sri Lanka
Keywords: Cocos nucifera, King Coconut, SSRs


King Coconut (KC) is an indigenous and highly valuable germplasm resource in Sri Lanka. Yet, KC populations' genetic diversity, relationships, and conservation strategies are not fully understood. Indigenous old KC populations have been dispersed across a few ancient villages in Sri Lanka. Five geographically dispersed locations were selected in Sri Lanka, and 20 KC individuals from each location were collected for the current study. Six randomly selected samples from every geographical location, together with the standard two Sri Lanka Red Dwarf and two Sri Lanka Tall varieties were initially genotyped using 21 SSR markers for polymorphism. Based on the results, ten polymorphic SSR markers were selected and used for genotyping. Power Marker, STRUCTURE, and GenAlex software were used for the SSR genetic analysis. Results revealed 0.62 mean Gene Diversity (Hs), 4.2 mean allele number, and 0.55 polymorphic information content (PIC). Clear differentiation of populations was observed with the STRUCTURE and UPGMA dendrogram. Single branching in the UPGMA dendrogram for Anuradhapura and Marandawila KC populations revealed high genetic uniformity over multi-branched Kadugannawa and Colambageara populations. According to AMOVA, 64% of the genetic variation has been partitioned among populations, indicating moderate population differentiation. Detail analysis, including a higher number of KC populations and systematic molecular analysis using more SSRs/SNPs needed in the future before implementing conservation and utilization strategies.


Attanayake R. B., & Fernando W. M. U. (1987). Thembili. Coconut Bulletin 4(1), 26-27.

Baudouin, L., & Lebrun P. (2002). The development of microsatellite kit and dedicated software for use with coconuts. Burotrop Bulletin 17, 16-20.

Caetano-Anollés, G., & Gresshoff, P.M. (1994). Staining Nucleic Acids with Silver: An Alternative to Radioisotopic and Fluorescent Labeling. Promega Notes, 45,13.

Dasanayaka, P. N., Everard, J. M. D. T., Karunanayake, E. H., & Nandadasa, H. G. (2005). Genetic diversity of coconut (Cocos nucifera L.) in Sri Lanka revealed by randomly amplified polymorphic DNA (RAPD) markers. Vidyodaya Journal of Science 12, 107-117.

Dasanayaka, P. N., Everrard, J. M. D. T., Karunanayaka, E. H., & Nandadasa, H. G. (2009). Analysis of coconut (Cocos nucifera L.) diversity using microsatellite markers with emphasis on management and utilisation of genetic resources. Journal of National Science Foundation of Sri Lanka 37(2), 99-109.

Ekanayake, G. K., Perera, S. A. C. N., Dassanayaka, P. N., & Everard, J. M. D. T. (2010). Varietal classification of new coconut (Cocos nucifera L.) forms identified from Southern Sri Lanka. Cocos 19(1), 41-50.

Goudet, J. F. S. T. A. T. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of heredity, 86(6), 485-486.

Gunn, B. F., Baudouin, L., & Olsen, K. M. (2011). Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. Plos one, 6(6), e21143.

Huang, R., Chu, Q. H., Lu, G. H., & Wang, Y. Q. (2019). Comparative studies on population genetic structure of two closely related selfing and outcrossing Zingiber species in Hainan Island. Scientific reports, 9(1), 17997.

Indrachapa, M. T. N., Meegahakumbura, M. K., & Dasanayaka, P. N. (2019, November). SSR Markers Revealed Genetic Diversity of King Coconut (Cocos nucifera) in Sri Lanka. In Proceedings of International Forestry and Environment Symposium of the Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka, pp 14.

Kamaral, L. C. J., Dassanayaka, P. N., Perera, K. L. N. S., & Perera, S. A. C. N. (2016). SSR markers reveal the population structure of Sri Lankan yellow dwarf coconuts (Cocos nucifera L.). Journal of National Science Foundation of Sri Lanka 45(4), 405-412.

Kamaral, L. C. J., Dassanayaka, P. N., Perera, K. L. N. S., & Perera, S. A. C. N. (2016). SSR markers reveal the population structure of Sri Lankan yellow dwarf coconuts (Cocos nucifera L.). Tree Genetics & Genomes, 12(6), 116.

Karunarathne, K. M. D. N., Aratchige, N. S., Meegahakubura, M. K., De Silva, P. H. P. R., Dilrukshika, D. H., Silva, D. P. M., & Samarasinghe, K. G. B. A. (2018). Identification of whitefly species (Hemiptera: Aleyrodidae) of coconut palms in Colombo and Gampaha districts. In Proceedings of the International Symposium on Agriculture and Environment 2023, University of Ruhuna, Sri Lanka, pp 47.

Liyanage, D. V. (1958). Varieties and forms of the coconut palm grown in Ceylon. Ceylon Coconut Quarterly, 9, 1-10.

Lui, K. (2005). PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics, 21, 2128-2129.

Meegahakumbura, M. K., Wambulwa, M. C., Li, D. Z., & Gao, L. M. (2018). Preliminary investigations on the genetic relationships and origin of domestication of the tea plant (Camellia sinensis (L.)) using genotyping by sequencing. Tropical Agricultural Research 29(3), 230-240.

Nainanayake A. (2019). Report of the Plant Physiology Division, Annual Report of the Coconut Research Institute of Sri Lanka.

Nimmakayala, P., Levi, A., Abburi, L., Abburi, V. L., Tomason, Y. R., Saminathan, T., ... & Reddy, U. K. (2014). Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC genomics, 15(1), 1-15.

Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data: II. Gene frequency data. Journal of molecular evolution, 19, 153-170.

Page, R. D. (2003). Visualizing phylogenetic trees using TreeView. Current protocols in bioinformatics, (1), 6-2.

Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes, 6(1), 288-295.

Perera, L., Russell, C. T., Provan, J., & Powell, W. (1999). Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Molecular Ecology, 8(2), 344-346.

Perera, L., Russell, J. R., Provan, J., & Powell, W. (2001). Levels and distribution of genetic diversity of coconut (Cocos nucifera L., var. Typica form typica) from Sri Lanka assessed by microsatellite markers. Euphytica, 122, 381-389.

Perera, L., Russell, J. R., Provan, J., & Powell, W. (2003). Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica, 132, 121-128.

Perera, A. A. F. L. K., Baudouin, L., Bourdeix, R., Fadhil, A. B., Hountondji, F. C. C., & Al-Shanfari, A. (2011). Coconut Palms on the Edge of the Desert: Genetic Diversity of Cocos nucifera L. in Oman. CORD, 27(1), 9-19.

Perera, L., Baudouin, L., & Mackay, I. (2016). SSR markers indicate a common origin of self-pollinating dwarf coconut in South-East Asia under domestication. Scientia Horticulturae, 211, 255-262.

Perera, S. A. C. N., Ekanayake, G. K., & Herath, H. M. N. B. (2015). An Investigation of the Tender Nut Potential of Diverse Coconut (Cocos nucifera L.) Varieties/Forms in Sri Lanka. CORD, 31(1), 39-45.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945–959.

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular breeding, 2, 225-238.

Punyawardena, B. V. R. (2008). Rainfall and agroecological regions of Sri Lanka. Natural Resources Management Centre, Department of Agriculture, Peradeniya, Sri Lanka.

Riangwong, K., Wanchana, S., Aesomnuk, W., Saensuk, C., Nubankoh, P., Ruanjaichon, V., ... & Arikit, S. (2020). Mining and validation of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for the estimation of the genetic diversity and population structure of coconuts (Cocos nucifera L.) in Thailand. Horticulture research, 7.

Rivera, R., Edwards, K. J., Barker, J. H. A., Arnold, G. M., Ayad, G., Hodgkin, T., & Karp, A. (1999). Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome, 42(4), 668-675.

Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular ecology notes, 4(1), 137-138.

Wikramarathne M.R.T. (1984). Report of the Genetics and Plant Breeding Division: Annual Report of Coconut Research Institute of Sri Lanka. pp 45.

Xia, W., Xiao, Y., Liu, Z., Luo, Y., Mason, A. S., Fan, H., ... & Peng, M. (2014). Development of gene-based simple sequence repeat markers for association analysis in Cocos nucifera. Molecular Breeding, 34, 525-535.

Zhao, Y., Wang, R., Liu, Q., Dong, X., & Zhao, D. G. (2021). Genetic diversity of ancient camellia sinensis (L.) o. kuntze in sandu county of Guizhou Province in China. Diversity, 13(6), 276.

How to Cite
Meegahakumbura, M. K., Indrachapa, M. T. N., Baddegama, T. S., Hettiarachchi, M. M., Dissanayaka, H. D. M. A. C., Samarasinghe, C. R. K., Weerasinghe, P. R., & Dasanayake, P. N. (2023). Genetic Relationships of Indigenous King Coconut (Cocos nucifera L.) Populations as Determined by SSR Markers. CORD, 39, 33-40.